Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 67(3): 296-307, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458674

RESUMO

PURPOSE: P128, a phage-derived lysin, exerts antibacterial activity on staphylococci by cleaving the pentaglycine-bridge of peptidoglycan. We sought to determine whether the presence of P128 could re-sensitize drug-resistant bacteria to antibiotics by virtue of its cell wall degrading property. METHODOLOGY: P128 was tested in combination with standard-of-care (SoC) drugs by chequerboard assays on planktonic cells and biofilms of strains individually resistant to these drugs. The bactericidal effect of P128 and drug combinations on planktonic cells and biofilms was measured by c.f.u. reduction assays. A mouse model of MRSA bacteraemia was used to test the efficacy of P128 and oxacillin in combination. RESULTS: A combination of sub-MIC P128 (0.025-0.20 µg ml-1) and 0.5 µg ml-1 of oxacillin resulted in inhibition of bacterial growth in four MRSA strains. Similar results were seen with all the other drugs tested, wherein sub-MIC of P128 re-sensitized S. aureus and CoNS strains to SoC drugs. The chequerboard assays on strains of S. aureus and CoNS showed that combinations of P128 and antibiotics consistently inhibited bacterial growth on biofilms. Data from scanning electron microscopy and c.f.u. reduction assays on drug-resistant S. aureus and CoNS demonstrated that sub-MICs of P128 and SoC antibiotics could kill biofilm-embedded bacteria. In vivo, a combination of sub-therapeutic doses of P128 and oxacillin could help protect animals from fatal bacteraemia. CONCLUSION: The ability of P128 to re-sensitize bacteria to SoC drugs suggests that combinations of P128 and SoC antibiotics can potentially be developed to treat infections caused by drug-resistant strains of staphylococci.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Oxacilina/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-28559263

RESUMO

Coagulase-negative staphylococci (CoNS) are the major causative agents of foreign-body-related infections, including catheter-related bloodstream infections. Because of the involvement of biofilms, foreign-body-related infections are difficult to treat. P128, a chimeric recombinant phage-derived ectolysin, has been shown to possess bactericidal activity on strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). We tested the killing potential of P128 on three clinically significant species of CoNS, S. epidermidis, S. haemolyticus, and S. lugdunensis, under a variety of physiological conditions representing growing and nongrowing states. The MIC90 and minimum bactericidal concentration at which 90% of strains tested are killed (MBC90) of P128 on 62 clinical strains of CoNS were found to be 16 and 32 µg/ml (0.58 and 1.16 µM), respectively, demonstrating the bactericidal nature of P128 on CoNS strains. Serum showed a potentiating effect on P128 inhibition, as indicated by 4- to 32-fold lower MIC values observed in serum. P128 caused a rapid loss of viability in all CoNS strains tested. Persisters of CoNS that were enriched in the presence of vancomycin or daptomycin were killed by P128 at 1× the MIC in a rapid manner. Low concentrations of P128 caused a 2- to 5-log reduction in CFU in stationary-phase or poorly metabolizing CoNS cultures. P128 at low concentrations eliminated CoNS biofilms in microtiter plates and on the surface of catheters. Combinations of P128 and standard-of-care (SoC) antibiotics were highly synergistic in inhibiting growth in preformed biofilms. Potent activity on planktonic cells, persisters, and biofilms of CoNS suggests that P128 is a promising candidate for the clinical development of treatments for foreign-body-related and other CoNS infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus lugdunensis/efeitos dos fármacos , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/microbiologia , Coagulase/metabolismo , Daptomicina/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Reação a Corpo Estranho/tratamento farmacológico , Reação a Corpo Estranho/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus epidermidis/enzimologia , Staphylococcus haemolyticus/enzimologia , Staphylococcus lugdunensis/enzimologia , Vancomicina/farmacologia
3.
Antimicrob Agents Chemother ; 60(12): 7280-7289, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671070

RESUMO

P128 is an antistaphylococcal protein, comprising a cell wall-degrading enzymatic region and a Staphylococcus-specific binding region, which possesses specific and potent bactericidal activity against sensitive and drug-resistant strains of Staphylococcus aureus To explore P128's ability to kill S. aureus in a range of environments relevant to clinical infection, we investigated the anti-S. aureus activity of P128 alone and in combination with standard-of-care antibiotics on planktonic and biofilm-embedded cells. P128 was found to have potent antibiofilm activity on preformed S. aureus biofilms as detected by CFU reduction and a colorimetric minimum biofilm inhibitory concentration (MBIC) assay. Scanning electron microscopic images of biofilms formed on the surfaces of microtiter plates and on catheters showed that P128 at low concentrations could destroy the biofilm structure and lyse the cells. When it was tested in combination with antibiotics which are known to be poor inhibitors of S. aureus in biofilms, such as vancomycin, gentamicin, ciprofloxacin, linezolid, and daptomycin, P128 showed highly synergistic antibiofilm activity that resulted in much reduced MBIC values for P128 and the individual antibiotics. The synergistic effect was seen for both sensitive and resistant isolates of S. aureus Additionally, in an in vitro mixed-biofilm model mimicking the wound infection environment, P128 was able to prevent biofilm formation by virtue of its anti-Staphylococcus activity. The potent S. aureus biofilm-inhibiting activity of P128 both alone and in combination with antibiotics is an encouraging sign for the development of P128 for treatment of complicated S. aureus infections involving biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ciprofloxacina/farmacologia , Daptomicina/farmacologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Gentamicinas/farmacologia , Linezolida/farmacologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Staphylococcus aureus/crescimento & desenvolvimento , Vancomicina/farmacologia
4.
Microbiology (Reading) ; 160(Pt 10): 2157-2169, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25023246

RESUMO

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other ß-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains.


Assuntos
Parede Celular/metabolismo , Peptídeo Hidrolases/metabolismo , Peptidoglicano/metabolismo , Fagos de Staphylococcus/enzimologia , Staphylococcus/efeitos dos fármacos , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Sepse/microbiologia , Staphylococcus/crescimento & desenvolvimento , Staphylococcus/isolamento & purificação , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...